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3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients
Complex Roots

Theorem 3. (Complex Roots)
If the characteristic equation (2) has a complex root r = a + ib, then the part
of a general solution of the differential equation (1) corresponding to r is of
the form

e (cq cosbr + cosin bx).

Exercise 1. Find the particular solution to the initial value problem
y' =4y +5y=0, y(0)=1y
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Exercise 2. Find the general solution to

yD 44y = 0.
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Theorem 4. (Repeated Complex Roots)
If the characteristic equation (2) has a repeated complex root r = a + ib of
multiplicity &, then the part of a general solution of the differential equation

(1) corresponding to r is of the form \
k-1
Z 2Pe™ (¢, cos br + €, sin bz).
p=0 ):p

Exercise 3. Find the general solution to
y© — 12y 4 63yW — 184y® + 315" — 300y’ 4 125y = 0
which has characteristic equation

(r* —4r +5)% = 0.
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